In 1202, the mathematician Leonardo Pisano Fibonacci (pronounced fi-buh-NAH-chee) published a book with the famous Fibonacci sequence in it. (A sequence is a list of numbers.)

This sequence starts with the numbers 1 and 1.

To get the next number, you add the first two:

\[1 + 1 = 2. \]

Now the sequence looks like 1, 1, 2.

To get the next number, you add the previous two numbers: \[1 + 2 = 3. \]

Now the sequence looks like 1, 1, 2, 3.

Keep doing this to build the sequence. The next two numbers in the sequence are 5 (from \[2 + 3 = 5 \]) and 8 (from \[3 + 5 = 8 \]).

Now the sequence looks like 1, 1, 2, 3, 5, 8.

1. Write down the first part of the sequence, shown below, and then fill in the blanks for the next 6 Fibonacci numbers.

\[1, 1, 2, 3, 5, 8, __, __, __, __, __, ___ \]

Draw a box around this list of numbers so you can find it easily. You will use it for several different activities.

2. In the first few terms (numbers) of the sequence, you can see a pattern of whether the numbers are even or odd. Make a table to see the pattern. Make as many rows as you need so you have a row for each number.

<table>
<thead>
<tr>
<th>Number</th>
<th>Even or odd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>odd</td>
</tr>
<tr>
<td>1</td>
<td>odd</td>
</tr>
<tr>
<td>2</td>
<td>even</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

3. Write 1-2 sentences to describe the pattern and explain why it happens. (Hint: What is an odd number plus an odd number?)

Standards: Patterns, numbers, reasoning, communication

Materials Needed: Pencil
Math Journal or Notebook
There are many patterns in the Fibonacci numbers. Open your notebook to look at the list of Fibonacci numbers that you made in Lesson 1. **Make sure that they are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, and so on.**

One pattern can be seen when you add up Fibonacci numbers.

1. Write the sums below in your math journal, along with the answers that go in the blanks.

 1 + 1 = ______
 1 + 1 + 2 = ______
 1 + 1 + 2 + 3 = ______
 1 + 1 + 2 + 3 + 5 = ______
 1 + 1 + 2 + 3 + 5 + 8 = ______

2. In the answers to each sum in problem 1, you don’t see the Fibonacci numbers. You can see numbers that are close to the Fibonacci numbers. How do the answers relate to the Fibonacci numbers?

3. **Predict** What is the next step in the pattern of additions? What answer do you expect?

4. **Check** Check to see if your prediction is correct by completing the next several steps in the pattern.

Materials Needed: Pencil
Math Journal or Notebook

Standards: Patterns, number theory, reasoning
Fibonacci Numbers
Lesson 3 of 10, work in pairs

Review of exponents: An exponent tells you how many times to multiply a number by itself. For example, $5^2 = 5 \times 5$ and $5^3 = 5 \times 5 \times 5$.

You can also see an exponent of 2 as giving the area of a square: $5^2 = 5 \times 5$ shows the area of the square of side length 5.

$5^2 = 5 \times 5$

Now we will use exponents to see another pattern in the Fibonacci numbers.

Remember that the Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, and so on.

1. Write the sums below in your math journal, along with the answers that go in the blanks.

$1^2 + 1^2 = ___$

When you have $1^2 + 1^2$, do the exponents first, so the answer is $1 + 1 = 2$.

$1^2 + 2^2 = _5__$

$2^2 + 3^2 = ___$

$3^2 + 5^2 = ___$

$5^2 + 8^2 = ___$

2. What is the pattern of the answers you got? (Are the answers related to the Fibonacci numbers?)

3. Predict What is the step in the pattern of exponents and additions? What answer do you expect? You may have to add a few more Fibonacci numbers to your list to get the next step.

4. Check Check to see if your prediction correct by completing the next several steps in the pattern.

Standards: Patterns, number theory, reasoning
Fibonacci Numbers
Lesson 4 of 10, work in pairs

We are going to explore how many different ways you can cover a length of squares with either squares or simple rectangles.

First, cut out the squares and rectangles from the master that goes with this lesson.

Next, look at the grid of 3 squares. How many different ways can you cover that grid with the squares and rectangles? Record all the possibilities in your notebook. Your answer should look like this:

Notice that there are 3 ways to do it, because we count \(\square \square \) and \(\square \square \) as different ways to cover the three squares, or you can just use 3 small squares.

Materials Needed: Pencil Math Journal or Notebook Master to go with Fibonacci Numbers Lesson 4

1. Now figure out how many ways there are to cover the row of 4 squares. Record all of the different pictures in your notebook.

2. Repeat with 5 squares.

3. Make a table like the one shown below in your notebook.

<table>
<thead>
<tr>
<th>Row of ____ squares</th>
<th>Number of ways to cover with squares and rectangles</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

4. Predict Look back at the list of Fibonacci numbers you made on Lesson 1 and compare it to the numbers in the table above. What do you think will be the next row in the table?

5. Check Use the row of 6 squares to see if your prediction is correct.

6. Challenge Question Can you find all of the ways to cover a row of 7 squares with these small squares and rectangles?

Standards: Patterns, combinations, reasoning
Fibonacci Numbers
Lesson 5 of 10, work in pairs

Remember that the Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, and so on.

Every counting number can be written as the sum of Fibonacci numbers, where no number is used more than once.

These examples show how this works.

9 = 8 + 1
25 = 21 + 3 + 1
100 = 89 + 8 + 3

1. Write the numbers below as a sum of Fibonacci number (without using any number twice)

55 =
75 =
200 =

2. Is there more than one way to write some numbers as a sum of Fibonacci numbers? For example, we could write 9 = 8 + 1 or instead as 9 = 5 + 3 + 1. What other numbers can you write in more than one way?

3. Explain Do you find a method that would always work for picking the right Fibonacci numbers to add up to the numbers? Write one or two sentences to explain how you could find the numbers to add.

Standards: Patterns, number theory, communication

Materials Needed: Pencil
Math Journal or Notebook
Remember that the Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, and so on.
Now let’s look at another pattern in the Fibonacci numbers.

1. Find the quotients, using long division or a calculator. Record the answer up through the thousandths place. Record the problem and the answer in your math journal.

1 ÷ 1 = __________
2 ÷ 1 = __________
3 ÷ 2 = __________
5 ÷ 3 = __________
8 ÷ 5 = __________

2. Look at the list of Fibonacci numbers to the left, and at the pattern of divisions done in problem 1. Figure out the pattern, and fill in the next 6 pieces of the pattern. Record your answers in a column as shown below.

13 ÷ 8 = 1.625

___ ÷ ___ = _________
___ ÷ ___ = _________ and so on

3. Examine Now look at the list of answers you got for problems 1 and 2. Are the answers getting close to some number? Write down your ideas about the answer, and you’ll use them in Lesson 7.

Standards: Patterns, division, reasoning

Materials Needed: Pencil Math Journal or Notebook Calculator (optional)
Look at the answer to Question 3 of Lesson 6 before you read further.

If you keep doing divisions of consecutive (one right after the other) Fibonacci numbers, like you did in Lesson 6, you will get closer and closer to a special number called the golden ratio. The golden ratio shows up in art, architecture, music, and nature. The ancient Greeks thought that rectangles whose sides form a golden ratio were pleasing to look at.

The golden ratio is often symbolized by the Greek letter phi, which looks like this: ϕ. It is the number $\phi = 1.6180339887...$ (and so on). When you write out the decimal, it continues on forever without repeating or making a pattern.

1. Collect boxes and cans from home, or use some that are in the classroom. For boxes, measure the height and width of the boxes, and for cans, measure the height and diameter. Make a table of what you measured.

<table>
<thead>
<tr>
<th>Description</th>
<th>Height in cm</th>
<th>Width in cm</th>
<th>longer one ÷ shorter one</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cereal box</td>
<td>30.0</td>
<td>19.4</td>
<td>1.546</td>
</tr>
</tbody>
</table>

2. Examine Is the quotient close to the golden ratio ϕ? It probably will never exactly equal ϕ, but many of the items are probably close. Which ones are closest?

3. Explain Why do you think that the common household items show the golden ratio?

4. Independent Research Do an internet search on “golden ratio architecture,” “golden ratio art,” or “golden ratio nature” and see what else you can learn about the golden ratio.

Standards: Measurement, data collection, communication
Fibonacci Numbers
Lesson 8 of 10, work in pairs

Remember that the Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, and so on.
The Fibonacci numbers can be visualized as a spiral of squares. First make a 1x1 square. Then make a square that shares one side of the first and is also 1x1.

Then make a new square above the 1x1 squares that is 2x2.

Then make a new square to the left of the ones you’ve made—it has to be 3x3 if it shares a whole side with what you’ve already drawn.

Then make a new square below what you’ve already made. It must be 5x5 to share a side with the figure you already have.

1. Continue this pattern on a piece of graph paper (the next square will be to the right, then above, then to the left, then below, and so on). Make sure you start near the middle of the paper to make room.
2. Look again at the ratios you computed in Lesson 7. Now think about the rectangles in all of the in-between steps (such as the rectangles shown on this card). Write down the ratio between the long side and the short side of each in-between step. What do you notice?

Standards: Patterns, number theory, reasoning

Materials Needed: Pencil
Math Journal or Notebook
Graph Paper
François Édouard Anatole Lucas (pronounced loo KAH) studied mathematics in the 1800s. He came up with a new number sequence, which are called the Lucas numbers.

The Lucas numbers are made in just the same way as the Fibonacci numbers, except the first two numbers are 2 and 1. If you don’t remember how to make the Fibonacci numbers, look back at Lesson 1.

The Lucas are:

2
1
3
4
7
11
18
29
and so on.

1. **Compare** Redo some of the examples in Lessons 1-6, except now use the Lucas numbers instead of the Fibonacci numbers. Carefully record your results in your math journal. Some questions you could ask are:
 - Do Lucas numbers follow the odd, odd, even pattern, or something similar?
 - Does the golden ratio show up when you take quotients of consecutive (one right after the other) Lucas numbers?
 - Can you write any counting number as a sum of Lucas numbers if you do not repeat any of the Lucas numbers?
 - Do other number patterns show up in the Lucas numbers?

As you do this exercise, you may find out that the answer to some of the questions is, “No, there isn’t a pattern.” Learning that there is not the same pattern in the Lucas numbers is also interesting—mathematicians like to learn when things are different as well as when they are the same. So, when you find that there isn’t a pattern, record that in your math journal also!

Materials Needed:
Math Journal or Notebook
Calculator (optional)

Standards: Patterns, number theory, reasoning
Fibonacci Numbers
Lesson 10 of 10, work individually or in pairs

Create This is your chance to be creative with mathematics! Create your own sequence of numbers. Perhaps you will use the same rule as the Fibonacci and Lucas numbers. Perhaps you will use a different rule to create the sequence.

1. Write down the rule to create your sequence in your notebook. Also write down the first 10-12 numbers in the sequence. Give your numbers a name!

2. **Compare** Look again at the patterns you learned in Lessons 1-6. Does your number sequence have some of the same patterns? Are there other patterns in your number sequence? Carefully write down which patterns you have. Also write down which patterns you looked for that your number sequence does not have.

3. Tell one of your classmates about your number sequence, and learn about the number sequence your classmate created.

4. **On Your Own** Prepare a presentation about your number sequence and the patterns in it. Make a slide show in PowerPoint or make a poster to share with your class.

5. **Independent Research** Do some research on the internet to find out more about the Fibonacci numbers. Read about Leonardo Fibonacci or François Édouard Anatole Lucas. Write a report or prepare a presentation.

Materials Needed: Pencil, Math Journal or Notebook, Internet or library for research

Skills: Patterns, number theory, reasoning, communication